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ABSTRACT

We propose to learn a low-dimensional feature representation for
multiple languages without access to their manual transcription. The
multilingual features are extracted from a shared bottleneck layer of
a multi-task learning deep neural network which is trained using un-
supervised phoneme-like labels. The unsupervised phoneme-like la-
bels are obtained from language-dependent Dirichlet process Gaus-
sian mixture models (DPGMMs). Vocal tract length normalization
(VTLN) is applied to mel-frequency cepstral coefficients to reduce
talker variation when DPGMMs are trained. The proposed features
are evaluated using the ABX phoneme discriminability test in the
Zero Resource Speech Challenge 2017. In the experiments, we show
that the proposed features perform well across different languages,
and they consistently outperform our previously proposed DPGMM
posteriorgrams which topped the performance in the same challenge
in 2015.

Index Terms— Multi-task learning, multilingual feature, unsu-
pervised feature learning, low/zero-resource

1. INTRODUCTION

Nowadays many state-of-the-art speech applications rely on a huge
amount of transcribed speech and linguistic expertise, e.g. pronun-
ciation dictionary. However, manual transcriptions and linguistic re-
sources are expensive to acquire. Even worse, they are absent for
some rare languages. Recently there is an increasing research inter-
est in unsupervised speech processing, which usually involves unsu-
pervised discovery of linguistic units [1, 2, 3], and the derived tech-
niques have been used in different applications, such as retrieval of
spoken queries in a speech database [4, 5, 6] and spoken document
classification or/and clustering [7].

In this paper, we consider the learning of speech features in an
unsupervised scenario, where only untranscribed speech is available
for target languages and the linguistic knowledge about these lan-
guages is not available. The speech features widely studied in this
research include posteriorgrams and the features derived from an in-
ternal layer of a deep neural network (DNN). Posteriorgrams can be
derived from a Gaussian mixture model (GMM) [4, 8], sub-clustered
GMM [9], unsupervised hidden Markov models (HMMs) [10, 11],
or deep Boltzmann machine (DBM) [12]. When features are de-
rived from an internal layer of a DNN, the DNN can be an autoen-
coder [13], a correspondence autoencoder [14, 15] or a siamese net-

This work was supported by the National Natural Science Foundation of
China (Grant No. 61571363) and the China Scholarship Council (Grant No.
201606291069). † Corresponding author

work [16]. Also the DNN can be trained to predict unsupervised
labels [17]. In addition to the above frame-wise features, segment-
wise features [18, 19, 20] which are represented by a fixed dimen-
sional vector have been proposed recently, and they are usually as-
sociated with the discovery of word-like units.

In this paper, we aim to learn frame-wise speech features that
support phoneme discriminability across multiple source languages.
To accomplish this, we employ a Dirichlet process Gaussian mix-
ture model (DPGMM) to perform phoneme-like unit modeling on
each source language and tokenize the untranscribed speech into se-
quences of phoneme-like labels. We train a multi-task learning deep
neural network (MTL-DNN) in which each task corresponds to a
source language and is to predict the unsupervised phoneme-like la-
bels of the source language. Our proposed multilingual features are
extracted from a shared bottleneck layer in the MTL-DNN.

The proposed features are inspired by our previous works [8,
17] that support one source language: In [8], we propose to use
Dirichlet process Gaussian mixture model (DPGMM) for unsuper-
vised acoustic modeling, in which each Gaussian component aims
to model a cluster of sounds from various speakers. DPGMM poste-
riorgrams are the unsupervised features which perform the best for
ABX phoneme discrimination in Zero Resource Speech Challenge
2015, and can perform comparably to the posteriorgrams derived
from language-mismatched phoneme recognizers. In [17, 21], we
further use DPGMM to derive low-dimensional features by train-
ing a bottleneck-shaped DNN to predict the unsupervised DPGMM
labels. The DPGMM-derived bottleneck features (BNFs) provide a
more compact representation than the corresponding posteriorgrams,
and they can perform comparably to cross-lingual BNFs (trained
using transcribed data) for retrieval of spoken queries in a speech
database. Note that our multilingual bottleneck feature learning is
similar to [22] for speech recognition, but our multilingual DNN is
trained to predict unsupervised phoneme-like labels instead of super-
vised labels. To the best of our knowledge, this is the first study to
train a multilingual DNN using unsupervised phoneme-like labels,
and we demonstrate that it is important to use language-dependent
labeling in our feature learning for phoneme discrimination.

To evaluate our proposed multilingual BNFs, we conduct the
ABX phoneme discriminability test [23, 24] in Zero Resource
Speech Challenge 2017 (ZeroSpeech2017)1, where the corpus con-
sists of five languages. The ABX phoneme discriminability test only
requires the generated features and a proper distance metric for the
features, providing a straightforward way to measure the discrim-
inability between two sound categories. There is no assumption

1http://sapience.dec.ens.fr/bootphon/2017/index.
html
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Fig. 1. Multilingual bottle-neck feature learning with language-
dependent phoneme-like labeling for M languages. The low-
dimensional shared features are extracted from the deep neural net-
work in the dashed box.

on language-specific knowledge (e.g. number of phoneme units)
in the generated features and the evaluation metric. Moreover, the
test is not specific to a downstream application and can directly
reflect the phoneme discriminability of the features, since the de-
fects in the features are not mitigated by some application-specific
postprocessing techniques. In our experiments, we report the ABX
phoneme discriminability test of the proposed multilingual BNFs. In
addition, we compare the multilingual BNFs with the cross-lingual
BNFs derived from manual transcription. Meanwhile, we compare
the multilingual BNFs with the monolingual BNFs learned using
language-dependent phoneme-like labels. Furthermore, we investi-
gate the effect of using language-dependent labeling. We also study
the benefit of using bottleneck features over posteriograms, and the
effect of vocal tract length normalization (VTLN) in unsupervised
acoustic modeling.

2. FEATURE LEARNING FROM UNTRANSCRIBED
SPEECH

The proposed feature learning technique is depicted in Fig. 1, which
consists of two modules, 1) language-dependent phoneme-like label-
ing and 2) multilingual bottle-neck feature (BNF) learning. Specifi-
cally, language-dependent phoneme-like labeling is to transcribe the
speech of each source language with phoneme-like unit labels using
Dirichlet process Gaussian mixture model (DPGMM). Multilingual
BNF learning is to learn a feature extractor via a multi-task learning
deep neural network (MTL-DNN) where each task is to predict the
language-dependent phoneme-like unit labels.

2.1. Language-dependent phoneme-like labeling

Many previous studies have shown that Dirichlet process Gaussian
mixture model (DPGMM) is practically suitable for scenarios where
no knowledge about the model complexity is available. For ex-
ample, Kamper et al. [25] firstly have demonstrated that DPGMM
is viable for unsupervised speech word clustering. With a paral-
lel sampler [26], Chen et al. [8] have shown the feasibility to ap-
ply DPGMM in frame-wise speech clustering and obtained effec-

tive posteriorgrams (PGs) for the phoneme discriminability test in
ZeroSpeech2015. When using DPGMM to cluster speech frames,
one can regard DPGMM as a phoneme-like unit model where each
Gaussian component models a phoneme-like unit. Therefore, we can
employ DPGMM to transcribe the target untranscribed speech into
sequences of phoneme-like labels.

Briefly, DPGMM is a Gaussian mixture model (GMM) extended
in a non-parametric Bayesian way in which a Dirichlet process prior
is placed over the vanilla GMM with a set of hyperparameters. We
adopt a Metropolis-Hastings based split/merge sampler2 to infer
DPGMM parameters. For more in-depth model explanation, please
refer to [27]. For detailed information about the sampler used in this
work, please refer to [26].

Given M source languages, the speech feature vectors of the
m-th source language are X (m) = {x(m)

i }Ni=1. After training the
DPGMM, we obtain K(m) Gaussian components together with their
mixture weights, π(m), mean vectors, µ(m) = {µ(m)

k }K
(m)

k=1 , and

covariance matrices, Σ(m) = {Σ(m)
k }K

(m)

k=1 . We can transcribe the
i-th speech frame x

(m)
i with label l(m)

i as follows:

l
(m)
i (x

(m)
i ) = arg max

1≤k≤K
pi,k, (1)

where pi,k = p(k|x(m)
i ) is the posterior of k-th Gaussian compo-

nent given x
(m)
i , which can be computed as in [4] using the π(m),

µ(m) and Σ(m). Since each DPGMM is language-dependent, we re-
fer to this phoneme-like labeling procedure as language-dependent
phoneme-like labeling.

2.2. Multilingual bottle-neck feature learning

Similar to the approach proposed by Veselý et al. [22], our mul-
tilingual bottle-neck features (BNFs) are learned via multi-task
learning (MTL) [28] deep neural network (MTL-DNN). The low-
dimensional speech representation shared across multiple languages
is extracted from a linear bottle-neck layer in an MTL-DNN as
shown in Fig. 1. Veselý et al. [22] have demonstrated that such
a representation captures common acoustic properties across the
source languages. However, different from [22], our BNFs are
learned without any manual transcription. Our MTL-DNN is to
predict unsupervised phoneme-like labels instead of supervised
labels [22].

Given M source languages, we have an MTL-DNN with M
tasks to learn. The loss function of such an MTL-DNN can be writ-
ten as:

Lce =

M∑
m=1

wmL(m)
ce , (2)

where wm is the weight of the m-th task which is set to 1
M

in this
study, and L(m)

ce is the loss function for the m-th single-task learning
(STL) DNN defined as cross-entropy between the predictions and
the true labels:

L(m)
ce = −

N(m)∑
i

K(m)∑
k

t
(m)
i,k logs

(m)
i,k . (3)

Here, t(m)
i,k is 1 if x(m)

i is labeled with phoneme-like unit k from the

m-th language-dependent DPGMM according to l
(m)
i as defined in

2http://people.csail.mit.edu/jchang7/code.php
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Eq. (1), otherwise 0. K(m) is the number of output dimensions. The
element of the softmax output s(m)

i,k is:

s
(m)
i,k = p(k|x(m)

i ) =
ez

(m)
k∑K(m)

k′=1 ez
(m)

k′
(4)

where z
(m)
k is the k-th input of the softmax layer, z(m). The MTL-

DNN can be trained using the back-propagation method by using the
weighted sum of the back-propagated error in each task.

After training, we obtain BNFs by forward-passing input spec-
tral features through the feature extractor (dashed box in Fig. 1.)
which is a DNN without the last two layers of the original MTL-
DNN.

3. EXPERIMENTS

3.1. Corpus and ABX phoneme discriminability test

We evaluated multilingual bottle-neck features (BNFs) in the track
1 of ZeroSpeech2017. The goal of this track is to construct a frame-
wise representation of speech sounds which supports word/sub-word
discrimination. ZeroSpeech2017 corpus consists of five languages
as listed in Table 1. Three of them are used for hyperparameter
development. The rest two are ‘surprise’ languages, denoted as
LANG1 and LANG2, for performance evaluation only.

Table 1. Datasets in ZeroSpeech2017 corpus.
Development Dataset Surprise Dataset

Training Test Training Test
English 45 hrs 27 hrs LANG1 25 hrs 11 hrs
French 24 hrs 18 hrs LANG2 11 hrs 6 hrs
Mandarin 3 hrs 25 hrs

We performed a set of ABX tests to evaluate the phoneme dis-
crimination ability of our proposed feature representation. For fur-
ther detailed definition, please refer to [23, 24] or the website of Ze-
roSpeech2017. We used the official ABX phoneme discriminability
test toolkit of the track 1 in ZeroSpeech2017. The test instances were
extracted from utterances with the average size of 1s, 10s, and 120s.
The distance of instance pairs is their DTW distance normalized by
the length of the aligned path. In DTW, we used cosine distance
for BNFs and J-divergence for posteriorgrams for frame-by-frame
comparison. The correct rates were averaged over all found contexts
for a given central phoneme and then over all central phonemes.The
error rates are reported in Section 4.

3.2. Training of DPGMMs

For each language in ZeroSpeech2017, we trained a DPGMM on
the training set using mel-frequency cepstral coefficients (MFCC)
with ∆ + ∆∆ (39-dimensional) post-processed by cepstral mean
and variance normalization (CMVN). The parallel split/merge sam-
pler [26] is employed to infer these DPGMMs. All the hyperparame-
ters for the inference of all DPGMMs are set following our previous
work [8] and are listed in Table 2, where mean(X ) and cov(X )
is the mean vector and covariance matrix of the input feature vec-
tors, X . Codes and parameter configuration are available at [29].
The numbers of Gaussian components of the resultant language-
dependent DPGMMs are shown in Table 2. As shown in Table 2,
the number of Gaussian components varies according to the number
of speech frames presented in each language.

Table 2. The hyperparameters in the training of the DPGMMs and
the number of Gaussian components (K(m)) in each DPGMM after
3000 iterations of the sampler.

α0 κ0 ν0 µ0 Σ0 K0 #iteration
1 1 41 mean(X ) cov(X ) 800 3000
m English French Mandarin LANG1 LANG2

K(m) 1148 1070 451 1108 578

3.3. Training of DNNs

Two MTL-DNNs were trained on the training sets with language-
dependent unsupervised phoneme-like labels in ZeroSpeech2017.
One was trained using all languages to extract the proposed multi-
lingual BNFs for the challenge evaluation and the other was trained
using the development datasets for experimental analysis due to the
time limitation in the evaluation. Note that DPGMM posteriorgrams
(PGs) [8] performed the best in the track 1 of ZeroSpeech2015 while
the monolingual BNFs proposed by Chen et al. [17] performed better
than DPGMM PGs in the low-resource query-by-example spoken
term detection. We believed monolingual BNFs would also out-
perform PGs in ZeroSpeech2017. To verify this guess and whether
multilingual BNFs outperform monolingual BNFs in terms of gener-
alization performance across multiple source languages when using
unsupervised phoneme-like labels, we trained a set of STL-DNNs
with BN layers on each language in ZeroSpeech2017 to extract
monolingual BNFs. Moreover, since one may transfer cross-lingual
knowledge when faced with a language without manual transcrip-
tion, we extract cross-lingual BNFs from a DNN trained on the
Fisher Spanish Speech Corpus3 (LDC2010S01, 163 hrs) to evaluate
the proposed multilingual BNFs.

The data configuration for the DNNs are shown in Table 3. 1 -
5 share the same hidden topology, four 1024-unit hidden layers,
one 40-unit linear bottle-neck layer and one 1024-unit hidden layer.
The dimensions of their softmax layers depend on the numbers of
the Gaussian components as shown in Table 2. The hidden topology
of 6 consists of two 1500-unit hidden layers and one 40-unit linear
bottle-neck layer. All the DNNs were trained using Kaldi [30] and
took filter banks plus pitch (FBank+F0) as the input feature. 90% of
training set was used as training subset and the rest 10% was used as
cross-validation subset when training the DNNs.

4. RESULTS AND ANALYSIS

4.1. Comparison with the baseline and the topline

Table 4 summarizes the performance of the proposed multilin-
gual BNFs and the features including the baseline feature (MFCC)
and the topline feature (PGs) provided by ZeroSpeech2017 chal-
lenge organization in the ABX phoneme discriminability test. As
shown in this table, multilingual BNFs outperformed the baseline
with absolute 0.8%-4.8% and 7.6%-13.2% in the within-talker and
across-talker test respectively. Our proposed multilingual BNFs
showed comparable performance across different source languages
in within-talker phoneme discrimination. Note that the topline
PGs of each language are obtained from a language-specific model
trained using speech data with manual transcription. In across-talker
phoneme discrimination, however, there are still obvious gaps be-
tween our proposed features and the topline features. This may be
caused by the lack of consideration to mitigate across-talker varia-

3https://catalog.ldc.upenn.edu/LDC2010S01
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Table 3. Data configurations for DNNs. 1 - 2 denote the MTL-
DNNs for the proposed multilingual BNFs; 3 - 5 denote the DNNs
trained with unsupervised phoneme-like labels for monolingual
BNFs proposed by Chen et al. [17]; 6 denotes the DNN trained on
cross-lingual corpus with manual transcription. Here, Sup (Unsup)
means that the corresponding DNN is trained with (without) manual
transcription.

1 Multilingual (Unsup, 5)
2 Multilingual (Unsup, 3)
3 Monolingual (Unsup, English)
4 Monolingual (Unsup, French)
5 Monolingual (Unsup, Mandarin)
6 Monolingual (Sup, Spanish)

ZeroSpeech2017 training set Fisher
English French Mandarin LANG1 LANG2 Spanish

1
√ √ √ √ √

2
√ √ √

3
√

4
√

5
√

6
√

tion in our phoneme-like unit modeling. Thus we investigate the use
of vocal tract length normalization in DPGMM in Section 4.5.

Fig. 2 illustrates the comparison between the proposed multilin-
gual BNFs and the cross-lingual BNFs learned on the Fisher cor-
pus. Here the cross-lingual BNFs are not tuned for the target zero-
resource languages. We can see that for within-talker phoneme dis-
crimination, multilingual BNFs approached the cross-lingual coun-
terparts. However, similar to the comparison between multilingual
BNFs and the topline PGs in Table 4, multilingual BNFs performed
worse than cross-lingual BNFs and the increase in across-talker er-
ror rates is larger than that in the within-talker error rates. Again,
we think this is not surprising, since DPGMMs only cluster speech
frames without explicit consideration of speaker information, while
the cross-lingual DNN is steered by manual transcriptions to ignore
the talker variation.
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12.0

14.0

16.0

18.0

20.0

1s 10s 120s 1s 10s 120s 1s 10s 120s

English French Mandarin

Multilingual (Unsup, 3) — within-talker
Monolingual(Sup, Spanish) — within-talker
Multilingual (Unsup, 3) — across-talker
Monolingual (Sup, Spanish) — across-talker

Fig. 2. Comparison between the proposed BNFs and the cross-
lingual BNFs learned in a supervised manner.

4.2. Multilingual BNFs vs. monolingual BNFs

Fig. 3 shows the comparison between multilingual BNFs and mono-
lingual BNFs when they were trained with unsupervised phoneme-
like labels. As shown in Fig. 3, the proposed BNFs performed the
best or the second best across different languages, i.e. multilingual
BNFs has a better generalization performance across multiple source

languages than monolingual BNFs. This is similar to the compari-
son between multilingual BNFs and monolingual BNFs when using
manual transcription in [22]. We also observed that our multilin-
gual BNFs brought more obvious errors than the best monolingual
(Mandarin) BNFs in Mandarin test data (0.4%-0.8% in Mandarin,
and 0.1%-0.2% in English and French). This is possibly because the
amount of training data in Mandarin is much less than that of the
other two languages. We also obtained the similar result in the Man-
darin test data even when we used a larger weight for Mandarin in
the weighted cross-entropy loss function, and further investigation
will be needed in the future.
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8.0

10.0

12.0

14.0

16.0

18.0

20.0

1s 10s 120s 1s 10s 120s 1s 10s 120s

English French Mandarin

Monolingual (Unsup, English )
Monolingual (Unsup, French)
Monolingual (Unsup, Mandarin)
Multilingual (Unsup, 3)

(b) Across-talker error rate (%)

Fig. 3. The comparison between multilingual BNFs and monolin-
gual BNFs, which are derived from unsupervised phoneme-like la-
bels.

4.3. Effect of language-dependent phoneme-like labeling

We investigate the importance of language-dependent labeling when
learning multilingual BNFs from the untranscribed speech. We
trained a DPGMM by pooling all the datasets used in the training of
the MTL-DNN and then trained a DNN to extract BNFs, which we
refer to as Pooling BNFs. As shown in Fig. 4, multilingual BNFs
outperformed Pooling BNFs significantly. This observation, on one
hand, suggests that multiple languages have considerably different
acoustic characteristics so that it is not desirable to represent all
the languages by a single language-independent DPGMM. On the
other hand, there are indeed acoustic properties shared by multiple
languages and it is plausible to learn a multilingual representa-
tion, e.g. the proposed multilingual BNFs, even though no manual
transcription is available.



Table 4. Error rate (%) of ABX phoneme discriminability test on the proposed multilingual BNFs, MFCC and posteriorgrams (PGs). The
PGs are provide by ZeroSpeech2017 trained with manual transcription.

Within-talker
Development dataset Surprise dataset

English French Mandarin LANG1 LANG2
1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Multilingual (Unsup, 5) 8.5 7.4 7.3 11.1 9.6 9.4 10.6 8.6 8.5 7.6 6.3 6.3 11.8 10.0 9.8
Baseline (MFCC) 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 10.3 9.3 9.4 14.1 14.3 14.1
Topline (Sup, PGs) 6.5 5.3 5.1 8.0 6.8 6.8 9.5 4.2 4.0 8.7 7.1 7.0 6.6 4.6 3.4

Across-talker
Development dataset Surprise dataset

English French Mandarin LANG1 LANG2
1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Multilingual (Unsup, 5) 13.8 12.2 12.1 17.6 15.6 14.9 12.4 10.8 10.7 15.5 13.0 12.7 17.7 16.9 16.3
Baseline (MFCC) 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3 23.6 23.2 23.0 30.0 29.5 29.5
Topline (Sup, PGs) 8.6 6.9 6.7 10.6 9.1 8.9 12.0 5.7 5.1 12.8 10.5 10.4 7.1 3.6 4.3

Note that, a concatenation of monolingual BNFs is also a mul-
tilingual feature representation where each source of monolingual
BNFs is derived from the language-dependent phoneme-like label-
ing. Thus, we also tested phoneme discriminability of feature con-
catenation. The feature concatenation outperformed Pooling BNFs
as well. We note that feature concatenation performed slightly better
(absolute error reduction 0.05%-0.4%) than our multilingual BNFs.
However, our proposed BNFs can keep the compact representation.
The dimension of our proposed multi-lingual BNFs does not depend
on the number of source languages while the feature dimension in
feature concatenation grows linearly with the number of source lan-
guages.

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1s 10s 120s 1s 10s 120s 1s 10s 120s

English French Mandarin

Multilingual (Unsup, 3) — within-talker
Pooling  — within-talker
Multilingual (Unsup, 3) — across-talker
Pooling — across-talker

Fig. 4. The performance of multilingual BNFs and the BNFs learned
from a DNN using language-independent DPGMM (Pooling). The
training data for these features are the training sets of English,
French and Mandarin from ZeroSpeech2017 altogether.

4.4. BNFs vs. PGs

Fig. 5 illustrates the comparison between the BNFs and PGs which
are both derived from the language-dependent DPGMM trained on
Mandarin in ZeroSpeech2017. It is similar to the observation in
[17] that the BNFs consistently outperformed DPGMM PGs in both
within-talker and across-talker tests. Note that the BNFs are 40-
dimension while the PGs can be several hundreds of dimensions,
e.g. 451-1148, as shown in Table 2. This suggests that the proposed
multilingual BNFs are a more efficient representation than PGs.

6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

1s

10s

120s

M
an

da
rin

PGs  — across-talker
BNFs — across-talker
PGs  — within-talker
BNFs — within-talker

Fig. 5. The comparison between the DPGMM posteriorgrams
(PGs) [8] and the BNFs learned using unsupervised phoneme-like
labels on Mandarin datasets.

4.5. Effect of VTLN

Note that the across-talker error rates (10.9%-17.9%) were much
higher than the within-talker ones (8.6%-11.5%) and our phoneme-
like model considers no talker information. Within the DPGMM
phoneme-like modeling, a direct way to improve the across-talker
performance is to improve the input feature of the DPGMMs so that
the unsupervised labels are more phoneme-like. Thus we further ap-
plied linear vocal tract length normalization (VTLN) similar to [31]
implemented in Kaldi on the input features of DPGMMs. As shown
in Fig. 6, after VTLN, the across-talker error rates were reduced 4%-
12% relatively. This further reduced the gap between the proposed
BNFs and the cross-lingual BNFs derived from manual transcription.

6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

1s 10s 120s 1s 10s 120s 1s 10s 120s

English French Mandarin

Without VTLN — within-talker
With VTLN — within-talker
Without VTLN — across-talker
With VTLN — across-talker

Fig. 6. The performance of the proposed BNFs using DPGMMs
learned with/without vocal tract length normalization (VTLN).



5. CONCLUSION AND FUTURE WORK

We have shown that it is viable to learn multilingual BNFs from
the untranscribed speech by training an MTL-DNN using unsuper-
vised phoneme-like labels. The unsupervised phoneme-like labels
are obtained from language-dependent DPGMMs. Our experimental
results showed that the proposed BNFs support phoneme discrim-
inability across multiple source languages, and their within-talker
phoneme discriminability shows competitive to the official topline
features of each source language. In the future, we would investi-
gate the ways to improve the across-talker phoneme discriminabil-
ity of our proposed features. For example, talker normalization in
phoneme-like unit modeling will further be studied. We would also
improve our proposed BNFs by considering the techniques adopted
by Heck et al. [32, 33] to improve DPGMM posteriorgrams.
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